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Slow flow of a Bingham fluid in a shallow
channel of finite width
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We present a theory for the three-dimensional flow of a Bingham-plastic fluid in a
shallow and wide channel. Focusing attention on slow flows appropriate for gentle
slopes, low discharge rates or the final stage of deposition, we ignore inertia and
apply the long-wave approximation. For steady flows, the velocity distribution, total
discharge, and section-averaged flux are obtained analytically in terms of the fluid
property and the geometry of the channel cross-section. Nonlinear stationary waves,
which connect a uniform depth upstream to another uniform depth downstream,
are then investigated, for both wet and dry beds. A numerical scheme is applied to
calculate the transient flow evolution. The final development of the stationary wave
due to steady discharge upstream is obtained numerically and the relation between
the tongue-like shape of the wave front and the fluid property is discussed. The
phase speed of the stationary wave is also derived analytically. Finally, the transient
spreading of a finite fluid mass released from a reservoir after a dam break is simulated
numerically. The transient development of the front and the final extent of deposition
are examined.

1. Introduction
Many regions in the world are plagued by mud flows which can be triggered by

torrential rains, mountain slides or volcanic eruptions. In 1985, the volcanic lahar
from Mount Nevado del Ruiz in Colombia was mixed with mountain snow and ice,
and resulted in mud flows which took the life of 23 000 inhabitants in the town of
Armero (McDowell & Raymer 1986; Mileti et al. 1991). More recently mud hazards
caused by Hurricane Mitch led to thousands of human deaths, and damaged half
of the nation’s infrastructure in Honduras alone. The 1991 eruption of Mt. Pinatubo
in Phillipines released roughly one cubic mile of volcanic ash and rock fragments
covering the adjacent mountain slopes (Newhall & Punongbayan 1996). Heavy rainfall
following the fallout led to gigantic mud floods which damaged thousands of villages.

Mud is one of several forms of natural debris and is distinguished by the abundance
of small and cohesive solid grains and the high water content. Rheologically the most
characteristic feature of mud is its plastic-like behaviour. In particular the shear
stress must exceed the yield stress, τ0, before flow begins. For understanding the
hydrodynammics of muddy rivers, numerous experiments for unidirectional shear
flows (e.g. Qian et al. 1985; Wang & Qian 1985) have shown that, when the clay
concentration exceeds just a few percent by volume, the stress–strain relation is closely
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approximated by the Bingham law, which can be generalized for three-dimensional
flows as follows (see e.g. Prager 1961)

εij = 0 if τ 6 τ0 (1.1)

and

τij =
(
µ+

τ0

ε

)
εij if τ > τ0 (1.2)

where

τ = ( 1
2
τijτij)

1/2 and ε = ( 1
2
εijεij)

1/2 (1.3)

where τij and εij are the stress tensor and the rate-of-strain tensor, respectively. For
many types of muds, both the yield stress and the Bingham viscosity are empirical
functions of the volume concentration of clay minerals and possibly the pH values
and salinity (see e.g. Krone 1963; Migniot 1968; Allersma 1980). To cover a broader
range of shearing rates for mud as well as other industrial materials such as foams,
gels and emulsions, the Herschel–Bulkley model which combines the yield stress and
power-law dependence has also been proposed.

Because of the nonlinear constitutive relation, early analytical studies of Bingham
fluids are limited largely to steady unidirectional flows in closed conduits (Bird, Dai
& Yarusso 1983). For steady uniform flows in open channels of finite width, Johnson
(1970) has given solutions for a steady inclined channels of various cross-sections (see
also Johnson & Rodine 1984). Using the Herschel–Bulkley model, Coussot (1997) has
proposed an empirical formula for the discharge in an open channel of rectangular
and trapezoidal cross-section. A shape parameter is introduced to account for the
geometrical characteristics of the channel. The specific form of this parameter must
be found empirically for each cross-sectional shape. The results obtained from his
formulae differ from experimental measurements by about 30–35%. Non-uniform and
steady flows in long vessels have been studied recently by Wilson & Taylor (1996)
and Taylor & Wilson (1997).

For unsteady flows with a free surface, as in natural streams, Liu & Mei (1989)
studied unidirectional long waves in shallow layers over a flat bed of infinite width.
Assuming slow flows, they used the lubrication approximation and examined a variety
of transient phenomena including stationary waves, the transient release and final
deposition of mud piles. Good agreement with experiments has been found in the
wave speed and the surface profile of a mud current flowing down a dry bed, almost
up to the tip where the flow depth is zero and the local slope is large. Extensions to
the Herschel–Bulkley model have been made by Huang & Garcia (1998). For radially
symmetric flows, Balmforth et al. (2000) have also used the Herschel–Bulkley model to
derive analytical and numerical solutions for the evolution of isothermal lava domes
on a horizontal plane. Justification of the long-wave lubrication approximation by
perturbation analysis has been given by Liu & Mei (1990) and by Balmforth &
Craster (1999). Local refinement for the small neighbourhood of the steep wave front
has been investigated by Piau (1996). In high-speed flows, roll waves, which are
periodic hydraulic jumps in clear water, appear also in laminar flows of Bingham
and power-law fluids. Accounting for nonlinear convective inertia, Liu & Mei (1994)
have treated the boundary layer equations by the momentum integral approximation.
Guided by a linearized instability theory they have performed numerical computations
to predict the nonlinear formation of roll waves. A more analytical theory of periodic
shocks has been advanced by Ng & Mei (1994) for a power-law fluid.

For three-dimensional flows, the long-wave approximation has been applied to the
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slow and steady spreading of mud released from a point source on an inclined plane,
by Hulme (1974) using the Bingham model, and by Coussot & Proust (1996) and
Wilson & Burgess (1996) using the Herschel–Bulkley model. Coussot, Proust & Ancey
(1996) have also studied the static problem of the final shape of a mud pile at rest on
an inclined plane. However, they introduced a physically questionable approximation
that all free surface contours are parallel.

A review of numerical methods for non-Newtonian fluids without a free surface
can be found in Crochet & Walters (1983) and Crochet, Davies & Walters (1984).
For viscoelastic flows with free surfaces several computational schemes have been
developed in the last decade (e.g. Keunings 1990; Sato & Richardson 1994; Mao &
Khayat 1995; Petra & Nassehi 1996).

In this paper we extend the approximate theory of Liu & Mei (1989) from two to
three dimensions for a thin layer of Bingham fluid flowing down an open channel of
finite width. The main assumptions are: (i) homogeneous fluid, (ii) negligible inertia,
(iii) very small depth-to wavelength ratio, and (iv) finite ratio of wave amplitude
to depth. Steady uniform flows are first discussed. Next, stationary waves which
propagate at a constant speed are investigated for both wet and dry beds. The front
of a stationary wave is studied numerically and the relation between fluid property
and the typical tongue-like shape at the wave front is examined. The phase speed of
the stationary wave is derived analytically. Finally, the transient spreading of a finite
fluid volume released from a reservoir due to the breaking of a dam is calculated
numerically. The effect of the fluid property and the channel shape on the extent of
final spreading is investigated.

Rapid flows, important to mud floods in mountain streams and volcano eruptions,
are left for future studies.

2. Lubrication approximation for long waves
Consider a three-dimensional laminar flow of a thin layer of mud flowing down

an inclined wide channel. Let the typical fluid depth and wavelength be D and L
respectively. We shall assume that

D/L� 1, (2.1)

i.e. long waves. Let u and µ be the typical flow speed and kinematic viscosity
respectively. The Reynolds number defined by Re = ρuD2/µL and the Froude number
defined by Fr = u2/gD (g is gravitational acceleration) are taken to be of the order
D/L at most and small.

We consider a straight channel whose cross-section is symmetric with respect to the
centreplane (y = 0), as shown in figure 1. The x-axis coincides with the longitudinal
axis along the channel bottom, and is inclined at the angle θ with respect to the
horizon. The y-axis is in the transverse direction and the z-axis is perpendicular to
both the x- and y-axes. The free surface and the channel bottom are described by
z = h(x, y, t) and z = H(y), respectively. Mass conservation requires that

∂h

∂t
+
∂qx

∂x
+
∂qy

∂y
= 0 (2.2)

where (qx, qy) denote the depth-integrated flux in (x, y)-directions. By invoking the
lubrication approximation, the inertia is negligible and pressure is hydrostatic.
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Figure 1. Definition sketch.

For vanishing shear stresses on the free surface it is easy to show that

τxz = ρg

(
sin θ − cos θ

∂h

∂x

)
(h− z), (2.3a)

τyz = ρg

(
− cos θ

∂h

∂y

)
(h− z). (2.3b)

Let us define the total shear stress by

τ(x, y, z, t) =
(
τ2
xz + τ2

yz

)1/2
. (2.4)

At the channel bed z = H(y) the total shear stress τb is

τb = ρg(h−H)

[(
sin θ − cos θ

∂h

∂x

)2

+

(
− cos θ

∂h

∂y

)2
]1/2

. (2.5)

If τb > τ0, fluid motion is possible with (u, v) 6= 0. In particular there is shear below
the yield surface (H < z < h0) defined by

τ = (x, y, h0(x, y, t), t) = τ0, (2.6)

which amounts to a relation between the free surface height h and the yield surface
height h0(x, y, t)

ρg(h− h0)

[(
sin θ − cos θ

∂h

∂x

)2

+

(
− cos θ

∂h

∂y

)2
]1/2

= τ0. (2.7)

Since there can be no slip on the bed, and no shear on the yield surface,

u = v = 0 on z = H,
∂u

∂z
=
∂v

∂z
= 0 on z = h0, (2.8)

the velocity components beneath the yield surface must be

u(x, y, z, t) =
ρg

2µ

(
sin θ − cos θ

∂h

∂x

)[
(h0 −H)2 − (z − h0)

2
]
, H < z < h0, (2.9a)

v(x, y, z, t) =
ρg

2µ

(
− cos θ

∂h

∂y

)[
(h0 −H)2 − (z − h0)

2
]
, H < z < h0. (2.9b)
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Above the yield surface there is no velocity shear. A ‘plug flow’ exists:

up(x, y, t) =
ρg

2µ

(
sin θ − cos θ

∂h

∂x

)
(h0 −H)2, h0 < z < h, (2.10a)

vp(x, y, t) =
ρg

2µ

(
− cos θ

∂h

∂y

)
(h0 −H)2, h0 < z < h. (2.10b)

If τb < τ0, then h0 = H(y) and there is no flow at all.

Now the depth-integrated fluxes can be calculated as

qx =

∫ h0

H

udz + (h− h0)up, qy =

∫ h0

H

vdz + (h− h0)vp (2.11)

to yield the depth-integrated law of mass conservation

∂h

∂t
+
ρg

µ

∂

∂x

[(
sin θ − cos θ

∂h

∂x

)
F

]
+
ρg

µ

∂

∂y

[(
− cos θ

∂h

∂y

)
F

]
= 0 (2.12)

where

F(h, h0, H) = 1
6
(3h− h0 − 2H)(h0 −H)2. (2.13)

If h0 is eliminated from (2.13) with the help of (2.7), (2.12) becomes a nonlinear
diffusion equation for h, which holds only wherever there is flow, i.e. where τb > τ0.
The one-dimensional limit (where ∂/∂y = 0) of this equation has been used by Liu
& Mei (1989) in several theoretical studies, and has been confirmed for stationary
waves flowing down a dry bed for a water–kaolinite mixture. In the special limit of
a flat bed, the two-dimensional extension has been derived by an asymptotic analysis
(Balmforth & Craster 1999).

We now introduce the following dimensionless variables:

(x, y) = D cot θ(x′, y′), (z, h, h0, H) = D(z′, h′, h′0, H
′), (2.14a)

t =
µ cos θ

ρgD sin2 θ
t′, (2.14b)

(u, v, up, vp) =
ρgD2 sin θ

µ
(u′, v′, u′p, v

′
p), (2.14c)

(qx, qy) =
ρgD3 sin θ

µ
(q′x, q

′
y), (2.14d)

F = D3F ′, Q =
ρgD4 cos θ

µ
Q′, (2.14e)

where D is the characteristic length scale in the z-direction such as the total fluid
depth at the inlet boundary, and Q denotes the total discharge over the channel
cross-section. In view of the long-wave assumption, the normalization defined by
(2.14a) is meaningful only for a small bed slope.

The normalized velocity components and the law of mass conservation follow easily
from (2.9), (2.10) and (2.12). Specifically one simply replaces the factors ρg/µ, sin θ
and cos θ by unity. For later convenience we record the normalized version of (2.12)



140 C. C. Mei and M. Yuhi

Free surface (z = hS)

Channel bottom (z =H)

y

z

hS

No-flow region Shear flow
region

Plug flow
region No-flow regionhS – α

–BM –B O B BM

Yield surface
(z = h0S = hS –α)

Figure 2. Cross-section of a steady uniform flow.

after dropping the primes,

∂h

∂t
+

∂

∂x

[(
1− ∂h

∂x

)
F

]
+

∂

∂y

[
−∂h
∂y
F

]
= 0, (2.15)

while (2.13) is unchanged. The yield surface, z = h0, is related to h through

(h− h0)

[(
1− ∂h

∂x

)2

+

(
−∂h
∂y

)2
]1/2

=
hc

D
≡ α (2.16)

where hc is the threshold depth of a uniform layer of mud about to flow down an
inclined plane of slope θ

hc =
τ0

ρg sin θ
. (2.17)

The parameter α is the ratio between the critical depth hc and the characteristic
depth D

α =
hc

D
=

τ0

ρgD sin θ
(2.18)

which also represents the ratio of the yield stress to the bottom shear stress of a
uniform flow of depth D, hence is a measure of plasticity. The Newtonian limit
corresponds to α = 0. For a uniform flow to exist, it is necessary that h > α.

The non-dimensional form of the constraint, τb > τ0, is

(h−H)

[(
1− ∂h

∂x

)2

+

(
−∂h
∂y

)2
]1/2

> α. (2.19)

3. Steady uniform flow
When the flow is steady and uniform along the x-direction, i.e. ∂/∂t = ∂/∂x = 0, h

and h0 must then be independent of y as seen from (2.15). That is, h = hS and h0 = h0S

are constants everywhere in the flow region. The flow is then confined in an effective
width 2B (figure 2) whose value can be determined from (2.16) by requiring that

h0S = HB ≡ H(±B) = hS − α. (3.1)

For a given H(y) and α, the flow half-width B is less than the maximum half-width
BM of the channel. This result is of course not surprising since the bed stress is too
weak for |y| > B where the mud depth is too small. Under the present approximation,
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Figure 3. Velocity distribution in channels of power-law cross-section H = m|y|n (m = 1,
α = 0.5, hS = 1). The yield surface is located at z = h0S = 0.5. (a) n = 1 (triangular channel),
(b) n = 2 (parabolic channel).

the free surface of the non-moving mud between the flow region and the channel
banks can in principle be anything, as long as the bed shear stress is below the yield
stress. We shall assume for simplicity that the transverse uniformity extends to the
channel banks so that h = hS up to |y| = BM where hS = H(BM).

The longitudinal velocities in the shear flow and plug flow zones are given by
(2.9a) and (2.10a) respectively with ∂h/∂x = 0 and h→ hS and h0 → h0S . This profile
is formally identical to the two-dimensional steady uniform flow on a plane bed of
the same local depth (Liu & Mei 1989). The transverse velocity v = vp = 0 vanishes
everywhere.

The flux is then calculated to be

qx = 1
6
(3hS − h0S − 2H)(h0S −H)2 = 1

6
(2hS + α− 2H)(hS − α−H)2. (3.2)

It is shown in Appendix A that the steady uniform flow is stable to all small
wave-like disturbances.

For a prescribed total discharge Q, conservation of mass requires

Q = 1
3

∫ B

0

(2hS + α− 2H)(hS − α−H)2dy. (3.3)

We present below numerical results for a channel with a polynomial cross-section:

H = m|y|n. (3.4)

The parameter m is a measure of the bank steepness, with m = 0 corresponding to
a flat bed of infinite width. The power n represents the channel smoothness at the
centreline. First, we plot in figure 3 the typical velocity profiles for the special cases
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Figure 4. Total discharge Q in parabolic channels as a function of α and m.

of n = 1 and 2, corresponding to triangular and parabolic cross-sections respectively.
Because of the normalization, all vertical scales are much exaggerated in comparison
with the horizontal scales. The plug and shear flow regions are clearly seen above and
beneath the yield surface respectively. The longitudinal velocity takes its maximum
on the centreplane. For a triangular channel with n = 1, the velocity distribution is
sharply peaked along the axis y = 0 due to the discontinuous change of the bottom
slope. Note that the horizontal shear rate ∂u/∂y = O(D/L)� 1 and the corresponding
shear stress is very small, τxy = O(D/L)2. The component τxz dominates the total stress
in (2.4) and defines the plug zone. The half-width of the flow region, B, is determined
from (3.1),

B =

(
hS − α
m

)1/n

. (3.5)

It can also be shown that

Q =
4n3m3

(n+ 1)(2n+ 1)(3n+ 1)
B3n+1 +

2n2m2α

(n+ 1)(2n+ 1)
B2n+1

=
4n3(hS − α)3

(n+ 1)(2n+ 1)(3n+ 1)

(
hS − α
m

)1/n

+
2n2(hS − α)2α

(n+ 1)(2n+ 1)

(
hS − α
m

)1/n

. (3.6)

The total discharge Q in parabolic channels (n = 2) is plotted as a function of α
and m in figure 4. As the Bingham parameter α decreases, the value of Q increases.
It is also seen that Q is larger for smaller m, i.e. a wider channel. From (3.6), the
section-averaged flux, 〈qx〉 is

〈qx〉 =
Q

2B
=

2n3(hS − α)3

(n+ 1)(2n+ 1)(3n+ 1)
+

n2(hS − α)2α

(n+ 1)(2n+ 1)
. (3.7)

Note that the section-averaged flux is a function of α and n but is independent of m.
In the limit of m = 0 and finite n, H = 0 for all y; the flow is strictly two-dimensional

with the velocity being uniform for all y. On the other hand, in the limit of finite m
but n→∞, the bed is flat for all |y| < 1 and the dimensionless flow width approaches
unity according to (3.5). For |y| > 1 H becomes unbounded, implying a rectangular
channel with vertical walls along y = ±1. Within the channel the velocity is uniform in
y for |y| < 1 only, hence is two-dimensional but non-zero along the effective sidewalls.
This discontinuity is a shortcoming of the power-law model for the channel which is
incompatible with the long-wave approximation near |y| = 1.

Results for a semi-elliptic cross-section are given in Appendix B.
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4. Numerical scheme for transient motion
To solve transient problems we have developed a numerical scheme based on

the finite volume approach. For spatial discretization a staggered mesh system is
introduced, in which h is evaluated at the cell centre (i, j), and the fluxes qx and qy
are evaluated at cell interfaces, (i ± 1/2, j) and (i, j ± 1/2), respectively. All spatial
derivatives are approximated by second-order central differences. Employing the ADI
(alternating direction implicit) scheme (Douglas 1955; Peaceman & Rachford 1955),
we discretize in time so that the truncation error is O(∆t)2.

Computations are carried out on a fixed grid, while the free boundary of the flow
region is moving in general. This means that the instantaneous location of the free
boundary must be tracked in the course of computations. In order to distinguish the
flow and no-flow regions, we first check the constraint condition (2.19) at each cell
interface. In the flow region where (2.19) is satisfied, the fluxes are approximated by

q
n+1/2

x,i+1/2,j = Fni+1/2,j

(
1− h

n+1/2
i+1,j − hn+1/2

i,j

∆x

)
, qn+1

y,i,j+1/2 = F
n+1/2

i,j+1/2

(
−h

n+1
i,j+1 − hn+1

i,j

∆y

)
.

(4.1)

Note that the fluxes qx and qy are linearized with respect to h
n+1/2
i,j or hn+1

i,j . In
order to evaluate the value of F at the cell interface, the free surface height at
cell interfaces is first determined by averaging the values at adjacent grid points:
hi+1/2,j = hi,j + hi+1,j/2 and hi,j+1/2 = hi,j + hi,j+1/2. In summary, (2.15) is discretized to
the following tridiagonal form:

− Fni−1/2,j

(∆x)2
h
n+1/2
i−1,j +

[
2

∆t
+
Fni−1/2,j + Fni+1/2,j

(∆x)2

]
h
n+1/2
i,j − Fni+1/2,j

(∆x)2
h
n+1/2
i+1,j

=
2

∆t
hni,j −

Fni+1/2,j − Fni−1/2,j

∆x

+
Fni,j−1/2 h

n
i,j−1 − (Fni,j−1/2 + Fni,j+1/2)h

n
i,j + Fni,j+1/2 h

n
i,j+1

(∆y)2
, (4.2a)

− F
n+1/2

i,j−1/2

(∆y)2
hn+1
i,j−1 +

[
2

∆t
+
F
n+1/2

i,j−1/2 + F
n+1/2

i,j+1/2

(∆y)2

]
hn+1
i,j −

F
n+1/2

i,j+1/2

(∆y)2
hn+1
i,j+1

=
2

∆t
h
n+1/2
i,j − F

n+1/2

i+1/2,j − Fn+1/2

i−1/2,j

∆x

+
F
n+1/2

i−1/2,j h
n+1/2
i−1,j − (F

n+1/2

i−1/2,j + F
n+1/2

i+1/2,j)h
n+1/2
i,j + F

n+1/2

i+1/2,j h
n+1/2
i+1,j

(∆x)2
. (4.2b)

At each time step, the inequality (2.19) is checked to determine the free boundary
and equation (4.2) is then solved to the next time step.

As a validation of the numerical scheme, calculations have been carried out for
a long-crested permanent wave advancing down a dry inclined plane. At the up-
stream boundary the normalized free surface height is taken to be unity for all time,
h−(0, t) = 1. With the grid sizes ∆x = 0.02 and ∆t = 0.001 the computed free surface
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profile compares very well with the analytical and measured results by Liu & Mei
(1989).

5. Stationary waves
Consider a straight channel initially filled with mud with the centreline depth h+.

From t = 0, additional mud is introduced steadily at some station far upstream. After
a long time a stationary (permanent) wave front is formed which propagates down
the channel at a constant speed C . The objectives here are to predict the geometry
of the wave front and the wave speed, as functions of the Bingham parameter α, the
channel geometry and the downstream state.

Two initial states which are also the asymptotic uniform states far downstream are
of interest. In the first, the mud is sufficiently deep (h+ > α) so that there is flow
before fresh mud enters. In the second the mud is everywhere too shallow (h+ < α)
so that there is no flow, with the dry bed h+ = 0 being a special limit. In either case,
the half-width BM+ of the mud-filled region in a power-law channel is given by

BM+ =

(
h+

m

)1/n

(5.1)

under the assumption of extended transverse uniformity.
After a long enough time a uniform state is also expected far upstream, where

the free surface height is denoted by h−. The upstream yield surface height is
h0− = h− − α. Two types of flow will be distinguished according to whether the
downstream surface is lower or higher than the upstream yield surface. We shall
refer to case (a) if h+ < h− − α corresponding to a high influx rate, and case (b) if
h+ > h− − α corresponding to a low influx rate. These are summarized in figure 5.

5.1. Shape of the stationary wave front

In principle the permanent wave profile can be found by introducing the moving
coordinate ξ = x− Ct and assuming h = h(ξ, y) and h0 = h0(ξ, y). Equation (2.15)
can then be rewritten as a partial differential equation for h,

∂

∂ξ
(−Ch+ qx) +

∂qy

∂y
= 0 (5.2)

which is no less difficult to solve than the full transient problem because of the
nonlinearity and the unknown position of the wave edge. We therefore choose to
solve (2.15) numerically as an initial-value problem under the constraint of (2.19).
The stationary waves are then obtained as the final steady state for sufficiently large t.

Calculations have been carried out for α = 0 to 0.9; both the wet and dry down-
streams are considered. The free surface height h− at the inlet boundary(x = 0) is set
to unity. Initially the free surface height is set to be h+ for all x > 0. If h+ < h− − α
(case (a), high influx rate), we must have BM+ < B−, so the initial condition is

h(x, y, t = 0) = h+, 0 6 y 6 BM+. (5.3)

On the other hand, if h+ > h− − α (case (b), low influx rate), then BM+ > B−. The
initial condition is

h(x, y, t = 0) = h+, 0 6 y 6 B−. (5.4)
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Figure 5. Schematic view of the cross-section of the flow at far upstream and downstream. (ai) High
influx rate h+ < h− − α and flowing downstream (h+ > α), (aii) High influx rate h+ < h− − α and
stagnant downstream (h+ < α), (bi) Low influx rate h+ > h− − α and flowing downstream (h+ > α),
(bii) Low influx rate h+ > h− − α and stagnant downstream (h+ < α).

For all t > 0 a steady flux is added at the upstream boundary according to
(3.2). No transverse flux (qy = 0) is allowed at the side boundary (y = B−), and on
the centreplane (y = 0). The typical grid size used in the calculations is ∆x = 0.02,
∆y = 0.02, and ∆t = 0.001. In the following numerical results for parabolic channels
are presented. Similar investigations have been made for triangular and semi-elliptic
channels, with qualitatively the same conclusions.

At the initial stage, the wave propagates much faster than the final steady speed.
The wave speed then decreases rapidly until t ∼ 30 to 50; afterwards it continues to
decrease very slowly. Calculations are continued until the flow field reaches the steady
state, numerically considered to be when dC/dt < 10−4. In this study, the final steady
states are attained at t ∼ 100 to 400. The non-dimensional time that is necessary to
reach the final state depends mainly on α. As α increases (higher yield stress), this
relaxation time increases.

Figures 6 and 7 shows respectively the final free surfaces and yield surfaces for
α = 0.5 and m = 1. Three uniform depths, h+ = 0.7 (flowing), 0.3 (stagnant), and
0 (dry) are taken as the initial state for the downstream. Near the inlet boundary,
the flow field becomes uniform after a long time, corresponding to the solutions in
§ 3. Near the wave front, a tongue-like front can be seen. For the larger h+ (flowing
downstream), the front is more elongated and flatter. For the stagnant and dry
downstream, the wave front is steep suggesting local inaccuracy of the long-wave
approximation. The yield surface has a rapid transverse variation near the banks.
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To see more details, the cross-sectional views are shown at several x-stations in figure
8(a–c). Note that figures 8(a) and 8(b) also correspond to the cases where BM+ > B−
(low influx) and BM+ < B− (high influx) respectively. When the downstream is flowing,
the cross-section of the free surface is almost flat in the central region while h decreases
monotonically with |y| near the lateral edges. When the downstream is stagnant, i.e.
when h+ is smaller, h in the central region is more rounded and the slope of h
near the lateral boundary of the flow edge becomes steep. These features are most
pronounced in the dry bed case. Near the wave front, the yield surface height, h0,
decreases monotonically as |y| increases. However, at the rear it first increases and
then decreases as |y| increases. This is a feature common to the flowing, stagnant and
dry downstreams in figure 8. Note that if the half-width of the flow region is greater
than the downstream half-width of the mud, i.e. B > BM+, then the edge intersects the
dry bed; h = H at y = B (see e.g. B(ξ1) in figure 8b). If on the other hand B < BM+,
the free surface height at the lateral edge of the flow region equals the initial free
surface height; h = h+ at y = B (see e.g. B(ξ2) in figure 8b).

As a measure of the length of the tongue we first find the location xe where
the tongue width reaches 90% of B−. This is calculated by numerically solving
B(xe) = 0.9B−. The distance between xe and the wave front on the centreline (xf) is
defined as the effective length of the tongue, Te. From many calculations for the dry
downstream the relation between the ratio Te/B− and the Bingham parameter α is
found for several values of m. Typically as α increases, this ratio decreases almost
linearly, and also becomes smaller for larger value of m. For the complete range of α,
we can plot all the results on a single curve as shown in figure 9:

Te = 0.835[(1− α)/m1/2]2 + 1.33[(1− α)/m1/2], (5.5)

implying that the dimensionless Te is uniquely related to (1 − α)/m1/2. For possible
practical applications we return to dimensional parameters marked by asterisks,

T ∗e = Teh
∗
− cot θ, m∗ = m(h∗−)−1 tan2 θ. (5.6)



150 C. C. Mei and M. Yuhi

Equation (5.5) can be rewritten as

T ∗e
h∗− cot θ

= 0.835

[
(h∗− − h∗c) tan θ

h∗−(h∗−m∗)1/2

]2

+ 1.33

[
(h∗− − h∗c) tan θ

h∗−(h∗−m∗)1/2

]
(5.7)

where h∗c is the critical depth defined by (2.17).

5.2. The wave speed

The propagation speed of a stationary wave is of course a result of the numerical
solution at large time. As suggested by observations of the numerical results discussed
in the previous section (cf. figure 8), the same result can be derived analytically for
both wet and dry downstreams.

The wave profile and the phase speed of the stationary wave must satisfy (5.2).
Along the centreline, there is no flux in the y-direction due to symmetry:

qy = 0 at y = 0. (5.8)

At the local edges of the flow region, the fluxes in both the x- and y-directions must
vanish:

qx = qy = 0 at y = B(ξ) (5.9)

where B is the half-width of the flow region. It follows by integrating (5.2) with
respect to y from 0 to B(ξ) that

∂

∂ξ

[∫ B

0

(−Ch+ qx)dy

]
+ ChB

dB

dξ
= 0. (5.10)

We now define the section-averaged free surface height 〈h〉 and flux 〈qx〉 by

〈h〉 =
1

B

∫ B

0

hdy, 〈qx〉 =
1

B

∫ B

0

qxdy. (5.11)

Equation (5.10) can then be rewritten as

∂

∂ξ

[
(−C〈h〉+ 〈qx〉)B]+ ChB

dB

dξ
= 0. (5.12)

Far upstream (ξ → −∞), the half-width of the flow region B−, the total discharge,
and the section-averaged flux, 〈qx〉− can be expressed as functions of the upstream
centreline depth h− by setting hS = h− in (3.5), (3.6) and (3.7), respectively.

Case (a): high influx rate (h+ < h− − α)
(i) Flowing downstream (h+ > α). The flow half-width B+ and 〈qx〉+ are obtained

by setting hS = h+ in (3.5) and (3.7), respectively. Integration of (5.12) with respect to
ξ from −∞ to ∞ leads to

C =
〈qx〉−B− − 〈qx〉+B+

h−B− − h+B+ +

∫ ∞
−∞
hB

dB

dξ
dξ

. (5.13)

In order to carry out the integration in (5.13), the value of hB is needed. Referring
to figure 5(ai), we let h− be sufficiently large so that B− > BM+, or, equivalently
h+ < h− − α. As ξ increases from −∞, the flow half-width B(ξ) decreases from B−
monotonically until the wave front joins the uniform downstream (B(ξ) = BM+)
where the orgin of the ξ-coordinate is defined. For ξ > 0 the flow width continues
to decrease to B+. This means that ahead of the wave front the downstream side
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is partially dry: the bed is dry for BM+ < |y| and is wet for 0 6 |y| 6 BM+. The
numerical results obtained in the previous section show that, at the lateral edge of the
wave front, the free surface intersects the bottom in the initially dry region (namely
hB = H , see B(ξ1) figure 8b) while the free surface height in the intially wet region
equals h+ (see B(ξ2) in figure 8b), i.e.

h(ξ, y = B(ξ)) =

{
H(B(ξ)) if −∞ < ξ < 0 (BM+ 6 B(ξ) 6 B−),

h+ if 0 < ξ < ∞ (0 6 B(ξ) 6 BM+).
(5.14)

Using (5.14) the integral in (5.13) can be further reduced to∫ ∞
−∞
hB

dB

dξ
dξ =

∫ 0

−∞
hB

dB

dξ
dξ +

∫ ∞
0

hB
dB

dξ
dξ =

m

n+ 1

[
Bn+1
M+ − Bn+1

−
]

+ h+(B+ − BM+).

(5.15)

Substitution of (5.15) into (5.13) yields

C =
〈qx〉−B− − 〈qx〉+B+

h−B− − h+BM+ + [m/(n+ 1)]
[
Bn+1
M+ − Bn+1−

]
=

(n+ 1)
[
(h− − α)1/n〈qx〉− − (h+ − α)1/n〈qx〉+]

(nh− + α)(h− − α)1/n − nh+h
1/n
+

. (5.16)

(ii) Stagnant downstream (h+ < α). Since there is no flow far downstream, the phase
speed can be derived by taking the limit of B+ = 0 in (5.16)

C =
〈qx〉−B−

h−B− − h+BM+ + [m/(n+ 1)]
[
Bn+1
M+ − Bn+1−

]
=

(n+ 1)(h− − α)1/n〈qx〉−
(nh− + α)(h− − α)1/n − nh+h

1/n
+

. (5.17)

In the limit where the downstream bed is completely dry, i.e. h+ = 0 and BM+ = 0,
(5.17) is reduced to

Cdry =
〈qx〉−B−

h−B− − [m/(n+ 1)]Bn+1−
=

(n+ 1)〈qx〉−
(nh− + α)

. (5.18)

In this case, the section-averaged velocity at far upstream can be described as

〈u〉− =
〈qx〉−

1

B−

∫ B−

0

(h− −H)dy

=
(n+ 1)〈qx〉−

(nh− + α)
(5.19)

which is the same as the phase velocity of the stationary wave, as is expected by mass
conservation.

Case (b): low influx rate (h+ > h− − α)
(i) Flowing downstream (h+ > α). Referring to figure 5(bi), we consider the case where

the upstream flow region is not too wide so that BM+ > B− > B+ or equivalently,
h+ > h− − α; then the bed is everywhere wet ahead of the wave front. Consequently
hB = h+ throughout the transition region so that∫ ∞

−∞
hB

dL

dξ
dξ = h+(B+ − B−). (5.20)
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Substitution of (5.20) into (5.13) leads to

C =
〈qx〉−B− − 〈qx〉+B+

B−(h− − h+)

=
(h− − α)1/n〈qx〉− − (h+ − α)1/n〈qx〉+

(h− − h+)(h− − α)1/n
. (5.21)

(ii) Stagnant downstream (h+ < α). Referring to figure 5(bii), we obtain the phase
speed by setting B+ = 0 in (5.21):

C =
〈qx〉−
h− − h+

. (5.22)

Note that in all the cases described above the phase speed is a function of α, h−, h+,
and n, but is independent of m.

Let us examine some limiting cases. The Newtonian limit is found by setting α = 0
in (5.16):

CN =
2n2
[
h

3n+1/n
− − h3n+1/n

+

]
(2n+ 1)(3n+ 1)

[
h
n+1/n
− − hn+1/n

+

] . (5.23)

The two-dimensional limit of a flat bed can be obtained by setting n→∞ in (5.16),
(5.17), (5.21), and (5.22). For a flowing downstream the phase speed becomes

C2D = 1
6

[
2(h2
− + h−h+ + h2

+)− 3α(h− + h+)
]
, (5.24)

while for a stagnant downstream it is reduced to

C2D =
(h− − α)2(2h− + α)

6(h− − h+)
. (5.25)

These limiting results agree with those by Liu & Mei (1989). If we further take the
Newtonian limit of (5.24) and (5.25), then

C2D,N = 1
3
(h2
− + h−h+ + h2

+), (5.26)

and

C2D,N =
h3−

3(h− − h+)
(5.27)

respectively, as was given by Mei (1966).
The relation between C and α is plotted in figure 10 for h− = 1 and n = 2, and

for various values of h+. Note that the phase speed does not depend on m. The
parametric domains of the four subcases are separated by the two dashed curves
h+ = α and h+ = h− − α = 1− α in the figure. Results for the flowing downstream lie
above the curve h+ = α, and those for the stagnant downstreams, below. Results for
high influx rates lie below the curve h+ = 1− α, and those for low influx rates, above.
It is clear that the phase speed decreases with the increase of α and that the phase
speed increases as h+ increases.

The analytically predicted phase velocities for various cases are confirmed by the
numerical results from transient computations, as shown by dots in figure 10. To
compare the effects of channel cross-sections the phase speed of a mud wave down a
dry bed is plotted in figure 11 for all α and for n = 1, 2, 3. The corresponding result
for a plane bed (i.e. uniform wave in the y-direction) is also included. As n increases,



Slow flow of a Bingham fluid in a shallow channel of finite width 153

0.5

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0
α

C

(a ii)

(b ii)(b i)

(a i)
h+=1–α

h+= 0.9

h+= α
0

0.3
0.5

0.7

Figure 10. Phase speed of the stationary wave in a parabolic channel as a function of α and h+.
Solid line: analytical, closed circle: numerical.

0.4

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 1.0
α

C

n=1

2

3

∞ (2D limit)

Figure 11. Phase speed of the stationary wave in a dry channel of cross-section H = m|y|n as a
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the phase speed increases, and attains the two-dimensional value when n→∞ as
described in (5.27). Similar confirmations have also been obtained for triangular and
semi-elliptic channels, not presented here.

6. Transient spreading after dam collapse
Consider a parabolic channel (n = 2) with a mud reservoir to the left (x < 0) of a

dam at x = 0. Initially the mud in the reservoir is at rest and occupies a finite length
of the channel so that the free surface height is described by

h(x, t) = 1 + x, my2 − 1 6 x 6 0, t < 0. (6.1)

Elsewhere (x > 0 and x < my2 − 1), the bed is initially dry. Note that the initial
normalized slope of the free surface in the reservoir is unity, ∂h/∂x = 1, in the
present coordinate system; in physical coordinates the corresponding free surface is
horizontal. At t = 0 the dam disappears and the reservoir mud is released suddenly,
and moves downstream until the final state of static equilibrium.

Calculations are made for three parabolic channels with different bank steepnesses
m = 0.5, 1, 2, and different mud plasticities α = 0.2 to 0.9. The numerical domain is
large enough so that the fluid edges are far from the numerical boundary at all times.
On the centreplane (y = 0), symmetry is assumed. The typical grid size used in the
calculations is ∆x = 0.025, ∆y = 0.025, and ∆t = 0.01. In general, a very long time,
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Figure 12. Sample evolution of the free surface after dam break. (a) t = 0, (b) t = 5, (c) t = 50,
(d) t = 10 000 (α = 0.3, n = 2, m = 1).

from O(103) to O(105), is necessary to reach the final stage. This relaxation time,
tR , increases as α decreases or as m increases. The increase of tR is quite significant
for α < 0.4. For α = 0.2 and m > 0, we terminated the calculation before the final
stage is attained. The final front locations for these cases are deduced by using the
Domb–Sykes extrapolation technique.

Typical evolutions of the free surface are displayed in figure 12 for α = 0.3 and
m = 1. Just after the dam break, the movement of the fluid is significant. The front
spreads downstream and forms a fan. The free surface is convex upward in the front
part and concave upward in the rear. Thus fluid is emptied from the rear to fill the
advancing front. The central part of the front elongates gradually and forms a tongue.

For sufficiently large t, the fluid pile comes to rest. At this final stage of deposition,
h must satisfy the condition of static equilibrium

(h−H)

[(
1− ∂h

∂x

)2

+

(
∂h

∂y

)2
]1/2

= α (6.2)

according to (2.19). Along the centreline, this condition can be further reduced to

h

∣∣∣∣1− ∂h

∂x

∣∣∣∣ = α (6.3)
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due to symmetry. This equation also governs the front and the back of a two-
dimensional mud pile at the end of downward flow and can be integrated to give

x− xo = h− ho + α ln
|h− α|
|ho − α| where

∂h

∂x
< 1 (the front) (6.4)

and

xo − x = ho − h− α ln
ho + α

h+ α
where

∂h

∂x
> 1 (the back) (6.5)

where h = ho at x = xo (Liu & Mei 1989). For two-dimensional problems, the values
of xo and ho can be determined from the initial mud volume by mass conservation.
For the three-dimensional problem here, xo and ho are coupled to the flow off the
centreplane and can only be solved as a part of the initial value problem involving
x, y and t. The result depends not only on the total fluid mass but also on the initial
shape of the pile as well as the channel geometry.

In figure 13, the final location of the mud front along the centreline, xf , is plotted as
a function of α for three values of m. The limiting result corresponding to an infinitely
wide channel (m = 0) is also included for comparison. Note that the final extent of
deposition increases as m increases, thus the front spreads farther in a channel with
steeper banks, which urge more fluid towards the channel axis to form a narrower
and faster tongue. The effect of m on xf becomes very strong for small values of α
(more Newtonian).

As expected, the final extent also increases as the plasticity measure α decreases. In
the Newtonian limit where α = 0, the fluid spreads out indefinitely.

7. Summary remarks
On the basis of the long-wave approximation, a theory has been developed for

the slow flow of a Bingham fluid in an inclined channel of finite width. For steady
uniform flows, the velocity distribution, total discharge, and section-averaged flux
are found analytically in terms of the fluid property and the channel geometry.
Typically the cross-section consists of three zones: around the centreplane of the
channel there is a shear zone at the bottom and a plug flow zone at the top, separ-
ated by the yield surface. In addition there are two calm zones near the banks. At
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the interface of the stagnant zone and the flowing zone, the fluid velocity vanishes.
The final geometry of the stationary wave front due to the steady supply of mud
far upstream has been calculated numerically by solving an initial-boundary-value
problem with a free boundary. The dependence on the initial flow depth, bottom
geometry, and the fluid property has been investigated. For both wet and dry down-
streams, analytical expressions for the phase speed have been derived. Finally, we
have studied the sudden release of fluid mud due to the sudden breaking of a dam.
The transient spreading of mud is simulated numerically from the release to its final
stoppage. The relation between the final extent of mud and fluid property is also
predicted.

The mathematical and numerical model developed here can be applied straight-
forwardly to slow flows on an unbounded incline with slowly varying terain. For
simulating a wider variety of fluids and range of shearing rates, modifications of
Herschel–Bulkley models are desirable and are not difficult. A more challenging task
is to treat a channel whose width and depth are comparable. In addition, the dynamics
of fast flows and the formation of roll waves in a shallow channel of finite width,
where the fronts of roll waves must be curved, is worthy of investigation.
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Appendix A. Linearized instability of sinusoidal waves
Let a small perturbation be added to the uniform flow as

h = hS + h̄, h0 = h0S + h̄0 = hS − α+ h̄0. (A 1)

Consider periodic waves for disturbances

(h̄, h̄0) = (h′(y), h′0(y))ei(kx−ωt), (A 2)

where k is the real wavenumber, and ω = ωr + iωi is complex. From the linearized
equations, an eigenvalue condition for non-trivial solutions of h′ is obtained as

d

dy

[
(2dS + α)(dS − α)2

6

dh′

dy

]
+ h′

[
i(ωr − kdS (dS − α))− ωi − k2

3
(d3
S − α3)

]
= 0 (A 3)

with the boundary conditions

h′ = finite at y = B, (A 4a)

dh′

dy
= 0 at y = 0, (A 4b)

where dS is the local fluid depth in steady uniform flow, which is defined as

dS (y) = hS −H(y). (A 5)

We multiply h′∗, the complex conjugate of h′, by (A 3) and then integrate the prod-
uct equation with respect to y from y = 0 to y = B. Using dS − α = 0 on y = B,



Slow flow of a Bingham fluid in a shallow channel of finite width 157

we obtain

ωr =

∫ B

0

kdS (dS − α)|h′|2dy∫ B

0

|h′|2dy
> 0, (A 6a)

ωi = −

∫ B

0

(2dS + α)(dS − α)2

6

∣∣∣∣dh′dy

∣∣∣∣2 dy + k2

∫ B

0

(d3
S − α3)

3
|h′|2dy∫ B

0

|h′|2dy
< 0. (A 6b)

These results show that the flow is unconditionally stable for small disturbances. The
one-dimensional limit of these equations are

ωr = khS (hS − α) > 0, ωi = − 1
3
k2(h3

S − α3) < 0. (A 7a, b)

Appendix B. Uniform flow in an elliptic channel
The channel cross-section is described by

y2

a2
+
H(y)2

b2
= 1 (−b 6 H(y) 6 0, −a 6 y 6 a) (B 1)

or equivalently,

y = a sinφ, H(y) = −b cosφ (−π/2 6 φ 6 π/2), (B 2)

in which φ is taken counter-clockwise from the negative direction of the z-axis. The
half-width of the flow region, B, is determined from (3.1) as

B =
a

b

[
b2 − (hS − α)2

]1/2
= a sinφB. (B 3)

The total discharge Q is

Q = 2a sinφB[e1 + e2 cosφB + e3 cos2 φB + e4 cos3 φB] + 2ae2φB (B 4)

where the coefficients ei (i = 1, 4) are given in terms of hS and b as

e1 = − 1
6

[
(hS − α)3 − 3hS (hS − α)2 − 2b2(hS − α)− 2b2hS

]
, (B 5a)

e2 = 1
8
b
[
4hS (hS − α) + b2

]
, e3 = 1

6
b2(2hS − α), e4 = 1

12
b3. (B 5b–d)

The total discharge Q is proportional to a. The section-averaged flux 〈qx〉 becomes

〈qx〉 = [e1 + e2 cosφB + e3 cos2 φB + e4 cos3 φB] +
e2φB

sinφB
. (B 6)

The section-averaged flux is a function of α and b but is independent of a. The
numerical results are qualitatively similar to those for the parabolic channel and are
not plotted.
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